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In this paper we present a spectral element-Fourier algorithm for
simulating incompressible turbulent flows in complex geometries
using unstructured quadrilateral meshes. To this end, we compare
two different interface formulations for extending the conforming
spectral element method in order to allow for surgical mesh refine-
ment and still retain spectral accuracy: the Zanoili iterative proce-
dure and variational patching based on auxiliary “mortar” functions.
We present an interpretation of the original mortar element method
as a patching scheme and develop direct and iterative solution
techniques that make the method efficient for simulations of turbu-
lent flows. The properties of the new method are analyzed in detail
by studying the eigenspectra of the advection and diffusion opera-
tors. We then present numerical results that illustrate the flexibility
as well as the exponential convergence of the new algorithm for
noncanforming discretizations. We conclude with simulation stud-
ies of the turbulent cylinder wake at Re = 1000 (external flow)
and turbuient flow over riblets at Re = 3280 {internal flow). © 1995
Academic Press, inc,

1. INTRODUCTION

High-order numerical methods, ie., spectral and implicit
finite difference schemes, have been used almost exclusively
in the direct numerical simulation of turbulent flows in the last
two decades [1]. They provide fast convergence, sinall diffusion
and dispersion errors, easier implementation of the *‘inf-sup”’
condition for incompressible Navier—Stokes, better data volume
over surface ratio for efficient parallel processing, and better
input/output handling due to the smaller volume of data. De-
spite their higher computational cost (in number of operations
per grid point) they are more efficient for long time integration
of unsteady flow problems, as shown in the analysis of Kreiss
[2]. They, perhaps, bear the greatest promise in extending the
methods of flow simuiation currently practiced in low Reynolds
number regimes to higher and thus more realistic regimes.
However, the geometric complexity in a number of important

prototype turbulent flows substantially limits the Reynolds
number regime that can be simulated using the resources cur-
rently available. Figure 1 shows this schematically and gives
an approximate overview of simulations completed at the pres-
ent time.

Multidomain, high-order methods that allow for local re-
finement and preserve the fast convergence of spectral discreti-
zations could also handle complex geometries and offer many
advantages over global spectral methods [3]. The spectral ele-
ment method was developed with such an objective in mind (4,
5]. Since then several different versions have been formulated,
including discretizations on triangular and nonconforming
guadrilateral subdomains [6-8]. This later work is conceptually
similar to the idea of ‘‘constrained approximation’ developed
by Demkowicz et al. as part of an k-p adaptive strategy for
finite element methods [9]. They use continuity arguments to
explicitly construct a constrained approximation space. In con-
strast, the methods we consider here generate these constraints
implicitly from the underlying differential equation or from an
adjoint variational equation.

Figure 2 illustrates the difference between a mesh of con-
forming elements and a mesh of nonconforming elements,
which we will refer to as an “‘unstructured’”” mesh. Generally
such a discretization will be the result of regular A-refinements
of an initially conforming mesh, but the refinement is arbitrary
and completely Iocal. The only restriction is that elements of
the mesh do not overlap.

Features such as selective local refinement and automatic
mesh adaptation are important in order to increase the computa-
tional efficiency of direct (DNS) and large eddy simulations
{LES) of turbulent flows. These [eatures, which can only be
implemented with great difficulty for conforming discreti-
zations, provide the foundation for a new and potentially very
effective approach for simulating wall-bounded turbulence. In
particular, recognizing the difficulty in employing subgrid mod-
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FIG. 1. Conceptual overview of turbulent flow simulations.

els in the near-wall region of a turbulent flow, all anisotropic
scales near the wall are fully resolved (a DNS approach), while
the more isotropic scales far from the wall are resolved using
a coarser grid and subgrid medels (an LES approach). Such a
hybrid DNS—LES approach has already been implemented for
a flow past a sphere using conforming spectral elements [10].
It is clear, however, that the success of such an approach in
future and more demanding simulations will depend critically
on composite meshes and nonconforming discretizations as
shown in Fig. 2. In particular, the ability to easily construct a
composite grid of very fine resolution with a more uniform
background grid is essential for efficiently resolving wall-
bounded turbulent flows.

In this work we develop nonconforming spectral element
algorithms for the simulation of turbulent flows in nominally
two-dimensional geometries of arbitrary geometric complexity;
eartier work has addressed the conforming case [11). The z-
direction is homogeneous and thus Fourier expansions can be
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FIG. 2. Conforming (upper) and nonconforming (lower) spectrai ele-
ment meshes.
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employed along that direction to enhance computational effi-
ciency. We can then express the physical domain as () =
Q, X [0, L}, where L, is the periodic length in the z-direction
and (), C BR? is an arbitrary two-dimensional region. The full
three-dimensional, time-dependent velocity field u(x, ¥, 2, ©)
wiil be represented by Fourier interpolation through a set of
evenly spaced planes in the periodic direction of the domain,
The velocity field is thus determined in physical space by the
M “‘samples’” w, = u(-, kAz), and in Fourier space by the
M + 1 complex Fourier coefficients w, = u(, i3,), where
B, = 2am/L, is a given spatial frequency and m a given wave
number. These two sets of coefficients are related through the
discrete Fourier transform

MiZ

u(x, v, r)=ﬂ7, > a(x, y, e,
m=—Mi2

(1

This decomposition provides the ability to efficiently simulate
the turbulent regime of several classical prototype flows, such
as flow past a cylinder, flow over a backwards-facing step, and
flow over riblets. The decomposition in modes is shown in Fig.
3; the corresponding two-dimensional, time-dependent Fourier
coefficients are computed on the unstructured mesh shown in
the figure, which remains the same for each mode m, An addi-
tional advantage of the unstructured spectral element-Fourier
method for external flows and spatially developing flows, in
general, is that large subdomains (elements) can be employed
in the regions with relatively small field gradients, resulting in
significant computational savings.

This paper is organized as follows, In Section 2 we present
the integration scheme for the Navier—Stokes equations, the
spatial discretization based on unstructured spectral elements,
and an analysis of the discrete advection and diffusion opera-
tors, Section 3 covers the solution algorithms for the elliptic
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FIG. 3. Selected cross sections of a three-dimensional wake illustrating
the computational approach used for flow past nominally two-dimensional
geometries; k is the index of the physical plane defined in (1).
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systems. Some examples that demonstrate accuracy and effi-
ciency are given in Section 4, followed by two applications to
turbulent flows and conclusions in Section 5.

2. FORMULATION

In this section we intreduce the discrete form of the Navier—
Stokes equations governing the flow, concentrating first on the
discretization of time. Next we develop the spectral element
approximations to the advection and diffusion operators on
unstructured meshes and analyze the discrete eigenspectrum of
these systems.

2.1. Navier-Stokes Equations

We consider here Newtonian, incompressible flows with con-
stant properties governed by the Navier—Stokes equations in
the form

V-u=0 inf}, (2a)
M o+ -LLw+ Nw in0 (2b)
at P7Re R
subject to boundary conditions of the form
wn=uyu, onl; {2c)

u = (uf + vy + wi) is the finid velocity and p is the fluid
pressure divided by density. The parameter Re = Ud/v is the
Reynolds number based on the kinematic viscosity v of the
fluid and appropriate velocity U and length scales 4 of the
flow. The linear diffusion and nonlinear advection operators,
represented above by L and N, are defined as

L{u) = Vi, (3)

N = *% lu:-Vu + V- (uu)l, )

where N 1s written in skew-symmetric form to minimize aliasing
errors [12]. We wish to solve this set of equations for the
velocity and pressure fields at each point x € (3, where (1 is
an open set in R with piecewise smooth boundary T'.

Let u® = u(-, nAr) be the solution at time level #. Using the
above representation for the velocity and pressure fields, we
can write the semi-discrete system of equations satisfied by the
mth Fourier mode as

1 J—1 S=1
‘E (ﬁm e E thug:q) = 2 Bqu(uﬂi‘?)v (52‘1)
=0 =0

i@_m=wﬁk (5b)
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i (youlyt! — G,) = L (0, (5¢)

The constants «,, 3,, and vy, are integration coefficients for a
mixed explicit/implicit stiffly-stable scheme of order J and have
been computed for schemes of up to third order [13]. i, and
0, are intermediate velocity fields used to split the time step
into separate integration schemes for the nonlinear advection
terms (explicit), incompressibility constraint (implicit), and lin-
ear diffusion {(implicit). The operators L, and N,, are defined
in Fourier space as

(L8

Lm(“) - ( xz + ayg ﬁm) [ (6)
M—1

N, () = > N(u)elats, N
k=0

Note that the nonlinear terms are computed in physical space
on each of the M data planes and then transformed back, unlike
the linear terms in which the modes are decoupled.

In the second step (5b), p&'' is the scalar field that ensures
the final velocity field will be solenoidal and is computed by
solving the Helmholtz equation

gt a? —
—_t — = 2 ’::1+1
(E+-m)s
1 (o, o0
=—| ="+ —=+] m‘\m i Qms
At(&x P IBW) in

subject t¢ a Neumann-type boundary condition of the form

8)

aﬁnﬂ J-1 1
LR = —q. A=y — n—q
- n%B{me) %VXgm] onTw (9

where £ = V X u is the fluid vorticity and n is the unit outward
normal to I',. This high-order pressure boundary condition is
the key to the time accuracy of the scheme, and is analyzed
fully in Ref. [13].

To advance the solution to a new time level we must solve
an advection equation and a sequence of elliptic Heimholtz
equations for the pressure and velocity on a rwo-dimensional
domain {1,,. Our discrete approximation to these operators will
be based on spectral element methods. In the next section we
state the general form of the Helmholtz equation as a model
problem for the elliptic kernel of the incompressible Navier—
Stokes equations and analyze the numerical propertics of the
resulting discrete systems.

2.2. Conforming Variational Formulation

Let x € ) be an open set in R? with piecewise smooth
boundary I'. Assume thai I" can be constructed as I' = I, U
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I’y and that I', may be empty but I, is not. The Helmholtz
problem is: given A € %R and smooth functions f:{) — @R,
g:T,— R, and h: T, — R, find u such that

Viu—-Mu+Ff=0 inQ, {10a)

subject to the boundary conditions
w=g ounl,, (10b)
n-Vu=h onl,. (10c)

The starting point for our numerical solution is the variational
form of (10a)-(10c). Let ¥ and V" be the spaces

F={u:ucH(Q),u=gonl,}
V={w:weH(),w=00nT,}

where H'(()) is the Hilbert space defined by
HY() ={ffe L) fi€ L(1),i = 1,2}

and an inferior comma denotes differentiation with respect to
the x; Cartesian coordinate. L,(£)) is the space of square-integ-
rable functions defined on {) with inner product

(£.8)= [ fed Vfge L),
and norm

WAl = (rn" Ve L.

The variational form of our boundary-value problem is: Find
u € ¥ such that

alu,w)y=(fw) + (h,w), Ywev, (12)
where the symmetric, bilinear form a(-, *) is defined as
a(i, wy = jn (VuVw + A% uw) diL. (13)

Assume that () is partitioned into a set of K quadrilateral ele-
ments such that
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where Q¥ is the interior of the kth element and (% = Q* U T*
is its closure. Any element boundary can be written as

r*= U ¥,

=1

where the I'Y's are the edges of the elements.

Let " C & be the space of C° piecewise polynomial interpo-
lants of degree N & N which satisfy the essential boundary
condition (10b) and ¥* C ¥ a similar space of functions which
have value zero on I',. The mesh parameter £ = (K, N) depends
on both the number of elements and the order of the polynomials
used within each one. Here we consider only the case where
N is constant throughout the mesh. For completeness, we begin
by describing the method for conforming elements in which
the edge of each subdomain exactly matches its neighboring
edges, thus ensuring the solution will be C° continuous. This
is accomplished by using a Lagrangian interpolant basis.

To complete the spectral element Galerkin approximation
to (12), we separate the solution into w* = g* + v*, where
£" € Y% is a polynomial approximation to g, and v € V*
is the unknown part of #* The solution will be represented
locally as

w1yt

> vHr, ),

i=1

N N
vi(r, ) = 2 D vhL(Oh(s) = (14
m=0 n=0

where I{r, sy = L(rl(s) is the tensor product of two cne-
dimensional Gauss-Lobatto-Legendre (GLL) interpolants as-
sociated with local node i, Evaluation of the integral form (12)
via GLL quadrature gives the elemental matrices

Ay=all, D, Fr=(f, e+ (e — alg", e, (15)
and the discrete Galerkin equation for the kth element as

Alvt = F* (16)

To form the global system we define a map n: (i, k) — (p)
from local node i to global equation number p so that

K K
A= X' AYy Fy= 2 FL,

=1 k=1

(17)

where 2 represents *‘direct stiffness summation,”” the process
of applying the map to assemble contributions from shared
nodes along element interfaces. The final algebraic system

A, =F, pg=1, .., A (18)
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requires the inversion of a symmetric, positive-definite matrix
A whose bandwidth is determined by the map .

2.3. Nonconforming Variational Formulation(s)

The conforming restriction is a definite drawback. Although
it simplifies mesh generation and data management, a conform-
ing mesh makes it practically impossible to implement features
such as local refinement and automatic adaptation. The impor-
tance of these aspects of simulating complex physical systems
has prompted the development of techniques that permit non-
conforming meshes yet retain the convergence properties of
global spectral methods. The resulting meshes are unstructured,
placing no restriction on the size, location, or connectivity of
the elemental subdomains.

These nonconforming methods fall under the general classi-
fication of patching. The central philosophy is to connect the
solution on two subdomains separated by an interface called a
patch, shown schematically in Fig. 4, Each subdomain may be
composed of one or many conforming elements. The patch is
constructed from a set of line segments y” associated with a
particular set of elemental edges 1'%, Its precise definition is

P={y:y=TiNTi# S, |y = |T¥ for some (i, k) and (j, )},

where | -] measures the length of a curve in ®R2 This defines
a set of nonconforming interfaces, where the conventional C°
restriction cannot be guaranteed in the discrete sclution. Treat-
ment of the solution along these boundaries defines the patch-
ing scheme.

In this section we will present two methods for constructing
nonconforming discretizations of the elliptic problem intro-
duced in (10a)-(10c). First is the Zanolli iterative procedure,
a method originally proposed for spectral collocation schemes
to patch subdomains using a C' condition across the interface
[14]. This algorithm has been modified and incorporated within
the variational framework of spectral elements. The second
patching scheme is based on a different interpretation of the
mortar element method that treats the patching problem in a
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folly variational manner, allowing the discrete system to be
solved directly [7].

2.3.1. Interface Conditions

Before describing the patching schemes for two-dimensional
problems, we turn briefly to a one-dimensional problem to
look at the effects of subdomain interface conditions on the
convergence rate of the numerical approximations. The C° con-
tinuity used so far is optimal for Galerkin projections that
adhere to the conforming restriction. The following modified
interface conditions extend the continuity requirement to both
a weak and strong C! condition that results in a tighter coupling
between elements but maintains spectral convergence for two-
dimensional problems. These modified interface conditions will
then form the basis of the patching schemes to supplement or
replace the C° continuity condition applied across conforming
element boundaries. In the following we assume that « satisfies
homogeneous boundary conditions.

We are interested in three forms of the discrete system, each
of which will be developed for a simple mesh with two ele-
ments. First is the standard spectral element Galerkin equation,
given by

Method A:

K

K
> atut, wh =D (f, wh,

k=1 5

where wt is a test function for the kth element. C° continuity
is enforced through the direct stiffness summation described
earlier.

The next form will be referred to as a *‘mixed’’ formulation
that combines Method A with a weak C' condition,

Method B:

alu', wh + a®, wh = (f,w") onfl,

ot 7.2 2 2
_Er_'w + a(v’, wh = (f,w?) on{)L

Recall that each test function w* vanishes outside of (}*, so that
the two cross terms are effectively evaluated only at the inter-
face node xy = x, = x§. Also, the set of weighting functions
¥* is modified by the requirement w'(x,) = 0. This system

enforces C° continuity and in addition it explicitly imposes a
weak C! coupling between elements.

The final form incorporates a strong €' condition that gives
exact continuity of the derivatives at the interface.

Method C:
atw', u'y + atw?, ) = (', ) + (w2 ),

au
dx

_ e
ax

%5

X5
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For this method, members of ¥* must satisfy wi(x,) = 0 =
w(x,), i.e., the variational form is not tested at the interface.
These three schemes were applied to solve a one-dimensional
Helmholtz equation with A = 1, with the exact solution given
by 1t = exp — x* cos 7wx/2 and appropriate forcing over the
domain —! = x = 1. The mesh is composed of two equal-
sized elements. Figure 5 shows convergence of the discrete
solution with respect to the total degrees of freedom in the
mesh, which is refined by increasing the polynomial order. The
“*spectral” solution shown for reference is a single domain
spectral element formulation and it achieves the best conver-
gence rate. Method A is the best of the three multidomain
solutions because the Galerkin formulation is optimal in H'.
Methods B and C destroy this optimality by choosing a progres-
sively ‘‘coarser’’ test space V7%, yet they still achieve the same
asympiotic convergence rate. The advantage of these latter two
is that they can be generalized to two-dimensional problems,
where adjacent elements may not be geometrically conforming.

2.3.2. lterative Patching

To extend the standard spectral element method to allow for
a nonconforming interface between elements we need to define
a new condition to replace the C° continuity applied across

HENDERSON AND KARNIADAKIS

element boundaries. Zanolli iteration achieves weak C' continu-
ity through an iterative procedure where Dirichlet and Neumann
boundary conditions are imposed on opposing sides of the patch
[14]. This is the generalization of Method B, and the following
version was modified to allow solution updates to be computed
in parallel.

Assume that the solution u satisfies homogeneous boundary
conditions on I and let g = «'|, and & = n - Vi, be the unknown
boundary conditions along the patch y = ' N Q7, with !
and «? each being the solution of an appropriate variational
problem in the domains 2! and (), respectively. For each of
the unknowns, let f; be a sequence of approximations generated
from the following algorithm. At the beginning of subdomain
iteration n, approximate patch boundary conditions are com-
puted using

g = O ¥ (1 — Ol |, h,=T'n-Vul |, (19

where 8 is a relaxation parameter, and I¥ is a general interpola-
tion operator from {}' to {}f along . Next, a new approximation
is computed independently on each subdomain by solving a
standard Galerkin problem with appropriate Dirichlet or Neu-
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mann boundary conditions. The resulting interface errors on
each domain boundary are defined as

1

€ =8y = Br1s €5 = (Ul — 1l

(20)

If either error exceeds a specified tolerance, then a new relax-
ation parameter is computed using

o (ehel— e
= Jei— TR

(21

and a new iteration begins with n « r + 1. The relaxation
parameter guarantees not only that the procedure will converge
independently of the relative subdomain size (g = lim,_. g.)
but also that it will converge rapidly, typically within 5- 0
iterations [15]. Since each subdomain problem is necessarily
well-posed, convergence of (19) guarantees that uf — ¥* on
QF The final solution is “‘weakly’” C' continuous (as defined
by the integral form of the Neumann boundary condition) and
satisfies a coupled set of equations analogous to Method B
discussed above. Consequently, the solution space & is the
same as in the conforming case—the patch simply introduces

an internal cut where the boundary conditions are generated’

iteratively using (19). The test space I * is coarser because the
variational form is never tested along vy in (%,

Since the algorithm requires the solution to a variational
problem on each subdomain but not a particular discretization,
it can be used in a variety of ways. It is ideal for both unstruc-
tured and fhybrid computations; we have used this approach
successfully to couple spectral elements with finite element
and finite difference schemes [15]. Each subdomain may be
recursively partitioned as a way of performing local refinement,
the details of which are ‘‘hidden’’ from other patched subdo-
mains. Generalization to an arbitrary number of subdomains is
straightforward, although perhaps not efficient for a large num-
ber of subdomains.

A final note on implementation. This is an inherently parallel
algorithm, and the approach we have taken is based on the
parallel virtual machine (PVM) communications model [16]. A
host program monitors the errors along the patch and generates
successive boundary conditions. It sends these boundary condi-
tions to a set of concurrently executing processes that update
the solution and send back new boundary data. Each concurrent
process is a standard spectral element solver with a simple
interface to the host. Efficiency is achieved by using a large
number of concurrent solvers.

2.3.3. Variational Paiching

The next method does not impose a continuity requirement
between adjacent elements but rather selects the ‘“most con-
tinuous’* seclution consistent with a set of patching condi-
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tions. It is the generalization of Method A, where the C% require-
ment between elements is found as a particular solution to a
coupled minimization problem. This approach was first intro-
duced by Bernardi et al. who coined the term * ‘mortar element
method’” because the discretization introduces a set of func-
tions that mortar the brick-like speciral elements together [7,
17, 18].

Since the trial space &* now admits discontinuous functions,
the spaces ¥* and & are nonconforming. Members of #* cannot
be measured in H'({}), so we introduce the alternative

HYQ) = {fifEHQH, Vk=1,.. K

with inner product
K

Fox=2 [ Ur+fe)d Vg€ HKQ).
k=1

and norm

Il = (LY YfE H¥ ).

All error analysis will be made in terms of H*({}), sometimes
called a * ‘broken norin’” since integral forms over (2 are broken
into a sum of integrals over each (),

This formulation generalizes the treatment of the solution
along element boundaries in the mesh, defined as

K M
r=Jr=Urr
k=1 m=1

where each y" is called a “‘mortar”” and corresponds to an
arbitrary subset of the I'V's. We now introduce a new space of
continuous functions M defined over F,

M={p:9E D), dp=gonT,}

which represent additional ‘‘unknowns’’ to be determined by
the variational statement of the problem.
The discrete trial, test, and mortar spaces are now:

P = fut:ut € HHQ)),
Vi = fwhwh (HY*(E)), wt = Oon T,h,
M= {g*: gt € CYDy, ¢ = gonl,}.

Members of $* and V" are represented as before, while mem-

bers of J* are represented as Nth-order polynomials over
each mortar ™. In terms of these spaces, the variational prob-
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lem to solve is: Find " € 9, ¢" € MP, such that for every
wh e v

alu", why = (f, wh) + (h, w")
Jym (" — Mrds =0 Vi€ Pyy(y™, ¥y (23b)

(uh - d)h)ls:U,TK =0 V,ym!

(23a)

{23¢)

where s = (, Y™ are the endpoints of a mortar, and Pu(y) is
the space of the Nth-order polynomials defined over y. The
test function is only a polynomial of order N — 2 because
the endpoint condition removes two degrees of freedom from
the constraint.

To solve the discrete equations, first we use (23b)—(23¢) to
express the unknown values of u" around the boundary of
each element in terms of the mortar function ¢. In ‘‘segment
coordinates,” let (zF, u¥, &) be nodal values of the mesh,
solution and mortar interpolants along the edge of element £,
and segment m such that A = I N y™ # {J; this defines the
path of integration for Eq. (23b). Using an Nih-order quadrature
rule, we can define the mass and projection matrices for the
segment

B« f\ whi ds, Py J\ ™ ds. (24)

In terms of these matrices, Egs, (23b)—(23c¢) can be expressed as

N
%=§¢%%) (252)
&
N-1 AN-1
> Byt = Pydy (25b)
i=1 i=1
N
=, ¢l (25¢)
j=0

or, by defining Z = B™'P, as the single matrix—vector relation:

N
b= >, Zrer. (26)
=0

This algebraic equation expresses the solution along the edge
of an element in terms of a mortar function, thus eliminating
the boundary nodes of #* as “‘unknowns’’ in the mesh.

The projection matrix and mortar values for each edge are
assembled as Z = 2'Z", ¢ = X' ™. If u, and u; are the nodal
values on the boundary and interior of u*, we can write the
elemental unknowns in vector form as

[ [
. u; I u;

27
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where {i* represents the true “‘unknowns’” for an element: pro-
jected mortar values and internal nodal values, Finally, we use
(27) to write the Galerkin equations for a single element in the
least squares form:

[ZHT(F* — ANZ48% = 0. (28)
The global system is assembled by summing the elemental ma-
trices
.4 K
A= 21 [Zk]TAk[Zk], F = E! [Zk]'l‘F.l:’

k=1 1

(29)

resulting in a global system Au = F identical to that for a
conforming mesh, but whose solution determines values at the
mortar nodes (boundary solution) and internal element nodes
(interior solution).

Belgacem and Maday recently proposed a new version of
the mortar element method that relaxes the condition of strict
continuity at vertices expressed in (23c), citing as their motiva-
tion a “‘difficulty in the implementation’’ because of the multi-
plicity of such nodes [19]. They show that errors are still

‘bounded asymptotically in the same way as both the method

considered here and the conforming method, but the estimate
is not sharp enough to predict the increase in consistency error.
QOur experience has been that with a proper choice of data
structures this condition does not cause significant problems and
that enforcing it increases the accuracy of the discrete solution.

2.3.4. Eigenspectra of Advection and Diffusion Operators

Next we look at spectra of the discrete advection and diffu-
sion operators on unstructured meshes to verify that the desir-
able approximation properties of conforming discretizations
have not been sacrificed. First consider the linear advection
equation,

QE=a-Vu on{},

ar (30)

where u is a scalar and a is a given velocity vector field defined
on ). For simplicity we assume |a} = 1 pointwise. The weak
form of (30) is: Find " € ¥* such that for all w* € V™

jn Wit — a - Vi) ) = 0, 31)

where u =
system is

dufor. The least squares form of the elemental

[ZT®BYZ e ~ DNZ = 0, (32)
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where the elemental mass and advection matrices are

Di=(a Vi Dy, By=(1, L. (33)
The solution to the global system is a1 = B~'Du. The global
matrices are assembled in the same way as indicated in (29):

K K
B='IZ9B{ZY, D=>'[ZTDHZ].  (34)
k=1 k=1

To avoid inversion of the full mass matrix B, which is sparse
but not diagonal, we can approximate it with the lumped matrix

Pyot

Bpp = 2 B , P= 1! -+e3 Flgof - (35)
g=1

This is a good approximation since the consistent mass matrix
is already diagonal except for the portion associated with the
mortar nodes, but we will verify this in the following analysis.
For skew-symmetric boundary conditions, the advection op-
erator becomes skew-symmetric, ie., (@ - Vi, w) = —{x,
a - Vw). Such systems are nondissipative and possess purely
imaginary eigenvalues, in this case determined by the nontrivial
solutions (A, u) of
(a- V- Au=0. (36)
Skew-symmetric boundary conditions are any boundary condi-
tions that guarantee the surface integral J A awyw 4T =0,
so there is zero net flux of u across . For all other boundary
conditions the eigenvalues are complex and depend on the
boundary data and a. Eigenvalues of the discrete problem are
determined by the system
(G — ADu =0, (37)
where G = B™'D,
Figures 6 and 7 compare eigenvalues of the discrete advection

L3 e B B B LI
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.
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FIG. 6. Computed eigenvalues of the discrete advection operator on 2
domain with skew-symmetric boundary conditions: (a) conforming mesh with
K =1, N =11, ny = 110; (b) nonconforming mesh with K = 3, N = 7,
ner = 133,
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FIG. 7. Computed cigenvalues of the discrete advection operator on a
domain with inflow—outflow boundary conditions; the mesh is the same as in
the previous figure.

operator in a simple channel domain discretized using conform-
ing and nonconforming meshes with approximately the saine
number of unknowns. The geometry of the domain is simply
[—1, 11 X [—1, 1]. Each eigenspectrum was computed using
the double-precision version of LAPACK s eigenvalue package
for nonsymmetric matrices [20]. This verifies that the unstruc-
tured advection operator has purely imaginary eigenvalues for
the periodic problem and complex eigenvalues for the inflow—
outflow problem of magnitude comparable to those of the strue-
tured mesh operator. Figure 8 further verifies that the maximum
eigenvalue for both methods scales in the same way as in global
spectral methods, i.e.,
|Mmax - @(Nz) (38)
Since the nonlinear advection equation (5a) will be treated
explicitly, the eigenvalues of the related matrix (I + AfG) must
lie within the stability region of the discrete time-stepping
scheme; this last result confirms that the time step restriction
on an unstructured mesh scales the same way as that for a
structured mesh. Our final result, in Fig. 9, shows that the
lumped mass matrix causes some dispersion at the highest wave
numbers, but it does not affect the eigenvalues near the origin.
Next we Iook at the diffusion operator developed in the
previous section. In this case we are interested only in the
condition number of A since this determines the convergence
rate for iterative solution techniques. Heuristically, we can show
that the condition number of the conforming spectral element
Laplacian scales as
K, ~ C(KN%). (39)
This estimaie assumes that the size of the smallest element in
the mesh 1s ~1/K; if the mesh contains smaller elements then
ks will be larger. Using a forward and inverse power method,
we computed condition numbers for a series of meshes that
combine elements of various sizes. Figure 10 shows a family
of curves for these domains, each one exhibiting a growth
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F1G. 8. Growth rate of the maximum eigenvalue of the discrete advection operator G on conforming and nonconforming meshes versus polynomial order M.

rate which is C(¥?). Comparing domains with simiiarly sized
elements, we see that A contains a blend of the eigenvalues
from the largest and smallest. but overall adheres to the es-
timate given in Eq. (39). This figure also shows that [ocal
refinement of a mesh produces a matrix with a lower condition

{a)

(b)

-20 G 20
im A

FIG. 9. Computed eigenvalues of the discrete advection operater on an
nnsiructured mesh using N = 8 {a) consisient mass mauix: (b) lumped
mass matrix.

number than that obtained by global refinement with the same
element size.

3. COMPUTATIONAL COMPLEXITY AND
SOLUTION ALGORITHMS

In this section we will describe efficient iterative and direct
methods for inverting the large algebraic systems that result
from nonconforming spectral element discretizations. Iterative
methods are more appropriate for steady-state calculations or
calculations involving variable properties, such as a changing
time step or a Helmholtz equation with a variable coefficient.
For direct methods the issue is one of memory management—
storing A as efficiently as possible without sacrificing the per-
formance needed for fast back-substitution. The development of
fast direct and well-preconditioned iterative solvers represents a
major advance towards the application of nonconforming spec-
tral element methods to the simulation of turbuient flows on
unstructured meshes.

3.1. Conjugate Gradient Iteration

Conjugate gradient methods {21] have been particularly suc-
cessful with spectral elements because the tensor—product form
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and local structure allows the global Helmholiz inner product
to be evaluated using only elemental matrices. To solve the
sysiem Au = F by the method of conjugate gradients we use
the algorithm

k=0,u=0rn=F
while v, # 0
Solve Mg, = r; k =k + |

ifk =1
D=
else
B = it riagqies
Pe = gt B
end
o = ”'I—lqk—I/PIAPk
By = e — ogAp,
Uy = o T oo
end
u =

where k is the iteration number, r, is the residual, and p, is the
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current search direction. The matrix M is a preconditioner used
to improve the convergence rate of the method and is discussed
in detail next.

Selection of a good preconditioner is critical for rapid conver-
gence; the preconditioner must be spectrally close to the full
stiffness matrix yet easy to invert. Popular preconditioners for
spectral methods include incomplete Cholesky factorization
and low-order (finite element, finite difference) approximations
122, 23}. Unfortunately, these preconditioners can be as compli-
cated 1o construct for an unstructured mesh as the full stiffness
matrix A. Next we present three preconditioners which are
simple to build and apply even when the mesh is unstructured.

In conjugate gradient methods the number of iterations re-
quired to reach a given error level scales as k. This is only
an estimate, since the actual convergence rate is determined by
the distribution of eigenvalues—if all of A’s eigenvalues are
clustered together. convergence is much faster. To assess the
effectiveness of a given preconditioner we begin by looking at
the condition number of M™'A.

Each of the following methods is based on selecting a subset
of entries from the full stiffness matrix. The first two precondi-
tioners are diagonal matrices given by

My = Ay

“‘diagonal,’”’ (40)

ot

M; = 2 1AU| “‘row-sum,”’ @n
=0

where ngr = rank (A); the diagonal (40} is sometimes called
a point Jacobi preconditioner. Both are direct estimates of the
spectrum of A and have the advantage of minimal storage and
work. They can be quite effective for diagonally dominant
systems such as the viscous correction step of the splitting
scheme described in Section 2.1. The third preconditioner is a
block-diagonal matrix

1A‘:‘,|. lflinhm.j: i
M= 0,
Aijs

if == g, j 7% 1, “‘block-diagonal,””  (42)

otherwise,

where n,, 15 the number of mortar nodes in the mesh. The
structure of this matrix assumes that A is arranged in the static
condensation format described in Section 3.2. Applying this
preconditioner amounts to storing and inverting the isolated
blocks of A associated with the degrees of freedom on the
interior of each element, while applying a simple diagonal
matrix to the mortar nodes.

The tollowing test examines the iterative solution to a Helm-
holtz equation for the two extreme cases A’ = 1 and A* =
10,000. Convergence is measured with respect to the solution
u(x, y) = sin wx sin wy. The mesh has K = 10 elements generated
by recursively subdividing a square domain, with ¥ = 15 in
each element. Figures 11 and 12 show the convergence history
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FIG. 11.
block-diagonal preconditioner.

for the weakly and strongly diagonally dominant systems. The
difference in convergence rates is explained in part by the
condition numbers of M™'A, given in Table I and Table II.
In spite of yielding a lower k,, the row-sum preconditioner
converges slower and therefore offers no particular advantage
over the simpler diagonal preconditioner. The block-diagonal
matrix performs significantly better than the other two, effec-
tively doubling the convergence rate in both cases. This precon-
ditioner is fully parallelizable and offers the most promise in
distributed computing environments, where the cost per itera-
tton can include significant time performing interprocessor
communication; its main drawbacks are the higher operaticn
count and storage requirement. The methods described in the
next section for implementing fully direct solvers can also be
used to reduce the storage requirement for the block-diagonal
preconditioner.

We conclude this section by giving the memory requirements
and computational complexity for a preconditioned conjugate
gradient (PCG) solver. Since the elemental Helmholtz operator
can be evaluated using only the one-dimensional Lagrangian
derivative matrix, the required memory is simply storage for
the nodal values and geometric factors:

S, = 5 KN~ 43)

Conjugate gradient iteration convergence history for a Helmholtz equation with A = 1: @ = none, A = diagonal, V = row-sum, and O =

As mentioned above, the dominant numerical operations ‘are
vector—vector and matrix—vector products, although the deriva-
tive calculations are folded into a more efficient matrix—matrix
muitiplication. The operation count for the entire solver is

C; = JE{C]KM + CQKAﬂ + C'_A,KNL (44)

where J¢ oc v KN? is the number of iterations required to reach
a given error level €. Qur numerical results (Tables I and IT)
show that with these preconditioners J* is still proportional to
KN?, but the constant is reduced. The block matrix operations
required to compute the elemental inner products provide good
data locality and can be coded efficiently on both vector proces-
sors and RISC microprocessors.

3.2. Static Condensation

The static condensation algorithm is a method for reducing
the complexity of the stiffness matrices arising in finite element
and spectral element methods, Static condensation is particu-
larly attractive for unstructured spectral element methods be-
cause of the natural division of equations into those for bound-
aries (mortars) and element interiors. To apply this method to
the discrete Helmholtz equation, we begin by writing Eq. (28)
in the form



UNSTRUCTURED SPECTRAL ELEMENT METHODS 203

107
1
100 oy
[ oo le
- o g»
393'-
L iote
ao_°g ey
L
E al
- % “aEv_ e
v Yug,
r a, Sy e
L oy To .
o o 427, Yee
8 A:vv e,
10-t ug ¢ .
o &'y L
F 3 .y
- op 82,99 .,
- o ¥y .'O..
o I ° s %o o
" 10 2 o AAVV .-.'-
-2 & =
b 3 o 2,7, . E|
= E L - 3
' oo -
r : A "o, ]
B & Yoy .
L ] 8,8 Ty vy 7
2 uo & -
-3 | T =
107 a s % . E
F e LIS . ]
l—: . s, v (™ n
o v -1
e a ¥ ) ) -
L v .
o &g Vo, Ll
_ . L) -
10-4 3 A, T ., 3
o a a .
I = P t. i]
- a -
L 4
. ,

iteration

FIG. 12. Conjugate gradient iteration convergence history for a Helmhoeltz equation with A* = 10,000: @ = none, A = diagonal, ¥V = row-sum, and
J = bleck-diagonal preconditioner.

Z'AuZ Z'An |k ¢ I ZTF, | into one for the mortar nodes and one for the interior nodes,

- = . (45) so that on %
Azlz An o; Fi

(Z'AnZ] ~ [Z°An)[An) [ARZ)
where A, is the boundary matrix, A;, = [A]7 is the coupling

. AN Sl = Z'F, — [Z7Ay]1Ax]'F, (46)
matrix, and A, is the interior matrix. This system can be factored »
u; = [An] ' — [An) [A0Z) 4. 47
TABLE I TABLE II
Condition Numbers of M~' A for a Helmholtz Equation Condition Numbers of M~" A for a Helmholtz Equation with
with A* = 1 A* = 10,000
N None Diagonal Row-sum Block-diagonal N None Diagonal Row-sum Block-diagonal
5 177 70 46 34 5 325 18.1 17.9 1.37
6 278 108 70 52 6 283 201 19.6 3.20
7 404 135 99 75 7 273 22.1 21.4 8.71
3 558 211 135 104 8 247 234 224 9.44
g 743 277 177 39 9 237 251 23.7 10.43
10 963 354 226 180 10 229 27.1 252 11.82
15 3042 961 &77 517 15 243 44.3 361 24.40
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During a preprocessing phase, the global boundary matrix is
assembled by summing the elemental matrices,

K

Ay = 2 (1Z7ALZ] = [Z7A5)[An] ' 1ARZ)Y,

k=1

(48)

and prepared for the soiution phase via LU factorization. Equa-
tion (48) may also be recognized as the Schur complement of
Ay in A, As part of this phase we also compute and store for
each element the inverse of the interior mairix [Ay]™! and its
product with the coupling matrix [Z"Ay1IAn] " The system is
solved by setting up the modified right-hand side of the global
boundary equations, solving the boundary equations using back-
substitution, and then computing the solution on the interior
as the matrix—vector product indicated in (28). Because the
coupling between elements is only C°, the element interiors are
independent of each other and on a multiprocessor system this
final stage can be solved concurrenily.

Figure 13 ilfustrates the structure of a typical spectral element
stiffness matrix factored using this approach. To reduce compu-
tational time and memory requirements for the boundary phase
of the direct solver, we wish to find an optimal form of the
discrete system corresponding to 2 minimum bandwidth for the
matrix Aj;. This is complicated by the irregular connectivity
generated by the patching. Our approach to bandwidth optimi-
zation reduces the problem to that of finding an optimal path
through the mesh that visits *‘nearest neighbors.”” During each
of the K stages of the optimization, an estimate is made of the
new bandwidth that results from adding one of the unnumbered
elements to the current path. The element corresponding to the
largest increase is chosen for numbering, resulting in what is
essentially a Greedy algorithm. This basic concept is illustrated

Uint

k
AEZ

b

FIG. 13. Static condensation form of the spectral element stiffness matrix.
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in Fig. 14. The reduction in bandwidth translates to direct
savings in memory and quadratic savings in computational cost.
The search for an optimal numbering system can be accom-
plished during preprocessing, so the extra work has no impact
on the simulation cost and can result in significant savings.
Table TII shows the results of bandwidth optimization for each
of the computational domains pictured in Fig. 15. For computers
where memory is a limitation, this procedure can determine
whether an in-core solution is even possible. Other simple
memory optimizations include storage of only a single copy of
the interior and coupling matrices for each element with the
same geometry and evaluation of the force vector F using tensor
product summation instead of matrix operations. By carefully
organizing memory usage, the overall memory requirement
scales as
S[J = ';TS[KZNZ + SzKNJ -+ S3KN4. (49)
As mentioned in the introduction to this section, the direct
solver is advantageous only when the cost of factoring this
stiffness matrix can be spread over a large number of solutions.
Therefore, we consider only the cost of a back-substitution
using the factored stiffness matrix, for which the operation
count scales as ‘
Cp = K¥*N* + ¢, KN* + ¢:KN. (50
For a well-conditioned, diagonally dominant . system this
method usually results in at least a factor of two savings versus
an iterative solver. For a system that is not diagonally dominant,
like the Navier—Stokes pressure equation, it can be faster by a
full order of magnitnde. In the next section we compare specific
timings for an unsteady simulation.

4. NUMERICAL SIMULATIONS

4.1. Ilustrations

Each of the foilowing examples addresses a different issue:
accuracy, resolution of singular behavior, and computational
efficiency for large-scale fluid flow problems. Here we center
our attention on the two-dimensional nonconforming discreti-
zations that provide the foundation for other (more compli-
cated) simulations.

A. Kovasznay Flow

In 1948, Kovasznay solved the problem of steady, laminar
flow behind a two-dimensional grid [24]. This exact solution
to the Navier—Stokes equations is given by

u=1-—evcos2my, v =~’\—e’“ sin 21y,
2w
1 (51
— 1_, Ax ,
P 2( er)
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FIG. 14.  Bandwidth optimization for a spectral element mesh: (a} computational domain; (b} connectivity graph; and (¢} an optimal path for numbering
the boundary nodes in the mesh. Line thickness demonstrates the change in global bandwidth with each step.

where A = Re/2 — (Re¥4 + 471", Streamlines of the flow
field are similar to the wake of a cylinder array at low Reyn-
oids numbers.

Using the family of meshes shown in Fig. 16, the two-
dimensional Navier—Stokes equations were solved using the
velocity boundary conditions indicated in Eq. (51) on the perim-
eter of the domain. The computed velocity field converges
exponentially in the H* norm for all discretizations. Since the
nonconforming mesh contains a mixture of the largest and
smallest elements of the conforming domains, we expect the
error to be bounded by the dashed lines (a least squares fit to
lu — ) in Fig. 16. This “‘numerical proof”” shows that the
additional consistency error associated with the nonconforming
space F* is small compared to the other discretization errors.

Figure 16 demonstrates another important peint; the two
patching methods presented here give nearly indistinguishable
results for smooth problems. In this example the variation is
less than 0.1% over the range of N considered. While Bernardi

TABLE III

Matrix Rank and Optimized Bandwidth of Three Complex-
Geometry Domains Representative of Internal and External Flow
Problems

Mesh K N Rank  Orginal  Optimized  Savings
riblets 91 9 1484 1483 250 83%
cylinder 14 11 2414 2406 402 83%
half-cylinder 176 7077 2156 399 81%

et @l. have proven that the mortar approximation is optimal in
the H* norm defined above [7], the results presented here do
not contradict this fact because the Zanolli iteration is applied
to a different approximation space using standard Galerkin
projections. While no mathematical connection has yet been
made between the two techniques, numerical tests in a variety

e

_:L*A_w_ Jr cylinder
[ | 1T
| i
—— :
half-gylind T l —— I
alf-cylinder
[ — ;
L
. —
=
riblets
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FIG. 15. Nonconforming meshes used to test the bandwidth optimization.
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FIG. 16. Convergence of spectral element approximations to the Kovasznay problem in the H* norm: #l = conforming, A = mortar patching, and V =

Zanolli iteration.

of problems have shown this trend is consistent and that in
some cases the C' patching is slightly more accurate.

B. Creeping Flow in a Wedge

The pext example is the solution to Stokes flow in a
wedge, where the *‘lid”’ moves with a constant velocity (u =
1, v 0). The solution is characterized by a series of
Moffat’s eddies [25), each one decaying geometrically in an
infinite cascade toward the tip. For the wedge shown here
(2ec = 2 arctan 3) the asymptotic ratios of successive eddy
location and strength are In rdfa, = 0.6975 and In w,/
. = 6.008; Fig. 18 shows that away from the moving
wall the simulations reproduce the cascade down to machine
precision. Figure 17 shows the difficulty of representing a
discontinuous function, in this case the w-component of
velocity, with high-order polynomials. Oscillations induced
by the discontinuity in the boundary data at the corner
propagate into the domain but are essentially limited to the
adjacent elements. This ‘‘limited influence’” is a general
feature of the C° interface condition and a good indication
of why proper A-refinement is still an important ingredient
of the spectral element method. In the mesh shown in the
right of this figure, a selective refinement of the corner

elements isolates the problem and effectively “‘resolves’ the
singularity. In this case the refinement is achieved by adding
four elements and two patches to the mesh, and the patching
is performed using mortar projection.

4.0

4.0
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FIG.17. Streamlines for creeping flow in a wedge: (left) conforming mesh
with X = 24, (right) nonconforming mesh with X = 34, Both discretizations
use a constant polynomial order of N = 8 in each element.
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FIG. 18. Geometric decay of eddy strength for creeping flow in a wedge, indicated by the magnitude of u-velocity along the centerline: (——) asymptotic
decay rate, C = initial conforming calculation, @ = solution after corner and tip refinement (radius decreases to the right).

C. Wakes

In the next example we include elements of these two
probiem areas by simulating the flow past a bluff body in
the shape of a half-cylinder at Re = 250. The half-cylinder
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FIG. 19. (a} Nonconforming and (b) conforming meshes for the half-

cylinder simulation,

geometry Is a canonical bluff body where the separation
points are fixed. Boundary conditions along the edges of the
computational domain are uniform flow (u = 1, v = 0) across
the left, top, and bottom bouvndaries and outflow ({(n - V)
u = 0) across the right boundary. The conforming mesh uses
K = 276 elements while the nonconforming mesh uses K =
176 elements, both shown in Fig. 19. Each simulation uses
49 collocation points per element (N = 6). We consider only
the mortar patching for this example because of the complexity
of the mesh.

The goal is to study the vortex formation region in the near
wake of the bady, shown in Fig, 20 as vorticity contours. The
vorticity is obtained from the curl of the computed velocity
field, and the noisy solution on the conforming mesh can be
interpreted as a type of aliasing in physical space that arises
becanse of small-scale features unresolved by the mesh. The
singular corner presents an additional difficulty in modeling this
flow. The nonconforming discretization of the domain isolates
these features within a few elements close to the surface and
resolves the fine scales present in the forming vortex. At the
same time, it eliminates unnecessary elements away from the
body where the solution is smooth but maintains far-field
boundaries at the same distance.
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This example is more typical of the problem size involved
in “‘production runs’’ of unsteady flows. Table IV compares
the CPU time and memory requirements for both discreti-
zations, where (a) ail the velocity and pressure systems are
solved directly, (b) the velocity system is solved using the
PCG solver, and (¢) the velocity system is solved without
the preconditioner. This table identifies the bandwidth of the
stiffness matrix as a key element in the performance of the
direct solver. With an arbitrary numbering scheme (random)
the nonconforming discretization outperforms the conforming
one because of the reduction in the number of elements. The
slight improvement in the advection phase for the optimized
conforming mesh reflects better memory performance during
the direct stiffness summation procedure. Bandwidth reduction
is more difficuit for the nonconforming mesh because the ele-
ment coupling extends beyond nearest neighbors, so the size
of each optimized system is approximately the same. The in-
crease in time required for the iterative solver (b) is consistent
with the prediction of the condition number scaling given earlier
and reflects a reduciion in the smallest ¢lement size of roughly
4:1. This data supports the conclusion that a nonconforming

HENDERSON AND KARNIADAKIS

discretization coupled with efficient solvers substantially im-
proves the results of the simulation by giving better qualitative
results for approximately the same computational cost and
lower memory requirements.

4.2. Turbulent Flow Simulations

In this section we present simulations of two prototype turbu-
lent flows that take advantage of the nonconforming discreti-
zations we have developed. They represent both external (spa-
tially developing) and internal (fully developed) turbulent flows,
Each of these simulations was performed on an Inte! Paragon
XP/§, using a number of processors (8 to 64) equal to the number
of Fourier modes in the discretization. Each processor solves the
independent equations for the velocity and pressure on one Fou-
rier mode, commupicating with other processors in the mesh only
when nonlinear interactions are computed (in physical space).
Our largest simulations require 4—6 s per time step. Integration
of the flow over a dynamically significant time interval requires
at least 10° time steps, Next we describe how nonconforming
meshes make these simulations practical.

FIG. 20.

Expanded view of the vortex formation region behind the half-cylinder,
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TABLE IV

Comparison of CPU Time/Time Step (Seconds) and Memory Requirements (M-Words) for the Half-Cylinder Simulations: (a) All Direct
Solvers; (b) Iterative Velocity/Direct Pressure; (¢) All Iterative Solvers

Solver Advection Pressure Diffusion Total Memory
Nonconforming a 0.13 1.31 2.44 390 6.15
Random b 5.03 6.49 3.33
C 298.84 300.30 3.33
Optimized a 0.15 0.65 1.22 2.02 3.64
b 5.03 5.83 157
[« 298.84 299.64 1.97
Conforming a 0.25 4.25 5.89 10.39 11.09
Random b 1.90 6.40 581
118.49 122.99 5.81
Optimized a 0.23 0.59 1.22 2.04 344
1.88 2,70 1.73
118.45 11927 1.73

Note. Simulations were performed on a Silicon Graphics Indigo workstation with 12 M-words of memory and a 50 MHz IP20 processor.

A. Wakes

We present here simulation results for flow past a circular
cylinder at Reynolds number Re = wa..d/v of 1000. Laboratory
experiments have shown that the wake of the circular cylinder
becomes turbulent for Re = 400 [26]. Consider the resolution
requirements for this problem. The flow near the cylinder is
composed of a thin boundary layer and separating shear layers.
In the near wake, these shear layers roll up into coherent struc-
tures that separate and move downstream as distorted tubes of
vorticity. The flow outside the wake is described by a potential
in which disturbances caused by the presence of the wake decay
at a rate of ~1/r”. Therefore, a large computational domain is
needed to account for the interaction of the wake with the
far field. An accurate flow simulation must resolve each of
these regimes.

Our refinement strategy is as follows. Starting from a small
initial domain (mesh M;) with a span of L, = 27 and M =
16, we get an approximation to the cylinder wake. Next, we
simultaneously refine the boundary layer and near-wake region
while expanding the global domain size to remove blockage
cffects (meshes M, and Af). Figure 21 shows a sequence of
three meshes that illustrate this approach, and Table V lists
the corresponding resolution and domain size parameters; all
lengths are nondimensionalized by cylinder diameter d. The
refinement criteria we employ are based on Strouhal number,
base pressure coefficient, drag coefficient, and rms values of
lift and drag fluctuations, The results of this refinement se-
quence are shown in Table VI, along with accepted experimen-
tal results [27, 28]. However, this essentially two-dimensional
refinement does not produce a final result that agrees with

experimental measurements, and further refinement seems to
produce negligible effects. In each case, the refinement is an
approximate bisection of the elements containing the boundary
layer, although in the final mesh the refinement is much more
extensive and includes the vortex formation region in the very
near wake.

In the final stage of our refinement study, we consider only
the effects of the spanwise length and corresponding resolution
on our [argest domain M;. We have performed simulations with
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FIG. 21. Cross-sectional view of the meshes used in the turbulent wake
simulations; corresponding size parametess are listed in Table V.






UNSTRUCTURED SPECTRAL ELEMENT METHODS 211

L ¥ T T Ty T T T LN L B T ]
i0-? A 3 ;
a i
oS -
i g |
“ %

o g 3
§ L ]
(= L ]
L J
10°8 - e
Ll y 1 il 1 N

a1 1

B, =2mm /L

FIG. 22. Normalized spanwise energy spectrum (L, M): A = (167, 128), X = (87, 128), @ = (87, 64), O = (87, 32), O = (4m, 32).
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FIG. 23, Fluctuating lift and drag coefficients for flow past a circular cylinder at Re = 1000: (a) pressure forces and (b) viscous forces.
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FIG. 24, Turbulent cylinder wake at Re = 1000: contours of normal velocity on the wake mid-plane mark the boundaries between suce & vOortices.
The sequence of images (a)~(h) are spaced approximately two shedding cycles apart (10 time units).




FIG. 27. Contours of streamwise velocity on a cross-flow plane.

sional and bears little resemblance to an idealized model of
two-dimensional vortex shedding.

Our last result for the circular cylinder, in Fig. 25, shows the
mean and corresponding rms streamwise and normal velocity
fluctuations at three downstream locations, averaged over ap-
proximately 20 shedding cycles. The latter pravides information
on the spatial distribution of the turbulence intensity, and the
location and variation of maximum turbulent stresses in the near
wake. To show the reiative mesh-independence of the velocity
statistics, we have included results from mesh M,. To our knowl-
edge there are no similar experimental data to compare against
at the present time, although current efforts point to that effect
(M. Gharib and D, Williams, personal communications).

B. Riblets

In previous work we have investigated numerically the drag
reduction obtained in turbulent flow over surfaces modified with
riblets along the streamwise direction [32, 33]. In particular, the
flow in a channel with its lower wall mounted with streamwise
riblets and a smooth upper wall was simulated using a conform-
ing spectral element—Fourier method. It was found that in the
laminar regime there is no drag reduction, but in the transitional

and turbulent regimes drag reduction of up to six percent can
be achieved for the riblet-mounted wall in comparison with the
smooth wall. These results also show a reduction of the peak rms
fluctuation and peak Reynolds stress at the riblet valley wall.

In work under way, similar simulations of higher resolution
are being carried out for different riblet configurations {341.
Accurate representation of the riblet geometry requires very
high resolution around the riblet tip. This could be accomplished
using conforming spectral elements; however, in that case the
entire computational domain needs to be remeshed in order to
satisfy the conforming discretization constraint. We can avoid
rebuilding the mesh by using nonconforming discretizations as
shown in Fig. 26,

Simulations were carried out both with conforming and non-
conforming discretizations for the domain shown in Fig. 26 with
dimensions 3.61 f in the streamwise, 1.82/ in the spanwise and
2H in the vertical direction (measured from the riblet midpoint
1o the smooth wall), Here, H is the chapnel half-height. There
are seven riblets in the domain of size 0.13H height and 0.26 H
width. The simulations were performed at Reynolds number
Re = U H/v of 3280, where U, is the mean centerline velocity.
This corresponds to a Reynolds number based on wall units of
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FIG. 28. A companson of mean velocity profiles.

To pursue large-scale turbulent flow simulations, we have
implemented this nonconforming spectral element—Fourjer
method for multiprocessor systems. Our hardware model is
based on a parallel, distributed memory computer where a
simple Fourier-mode to computer-node mapping results in
good efficiency and scalability, A major advantage of this
mapping is that it allows the use of direct solvers for the
independent elliptic systems that must be solved on each
processor. We also indicated how iterative solvers can be
used to deal with very large problems that require more
memory than is available on a single node. Because of the
nature of these simulations, which require tracking the statisti-
cal behavior of the flow over long time periods, exclusive
use of these iterative methods is not practical. We presented
preliminary work on preconditioners that significantly improve
the conditioning of the stiffness matrix, but none of which
changed the scaling of computational work required for high
resolution. A major focus of future work must be to 1nprove
the performance of iterative solvers, for example, by using
preconditioners based on the Schur complement of the full
stiffness matrix {35, 36].

In unstructured spectral discretizations, exponential conver-
gence is preserved for smooth solutions of the Navier—Stokes
equations. This was demonstrated numerically for the Kovasz-
nay flow, an exact two-dimensional Navier—Stokes solution.
The flexibility that nonconforming discretizations provide was
demonstrated for flow in a wedge, where spurious oscillations
due to discontinuous boundary conditions were accurately re-
moved from the global solution. Finally, the new spectral ele-
ment—Fourier method was applied to simulations of turbulent
wakes and wall-bounded flows. We performed calculations on
successively larger and more refined computational domains
to examine the effect on the turbulent wake of the circular
cylinder at Re = 1000, Numerical convergence was established
and detailed mean flow data and turbulence statistics were
presented for first time.
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